PROCESS SIMULATION CUP
PSC2020- OPTIMAL CONTROL

PHASE 2: MAKE USE OF THE “D” IN PID

DR.-ING. JAN C. SCHÖNEBERGER
BERLIN, 1 APRIL 2020
OUTLINE

- General Information
- Phase 2
 - Overview
 - Scenario 1: Set-point step change
 - Scenario 2: Disturbance of the flowrate
 - Scenario 3: Shutdown of one engine
- Plant performance with the initial controller settings
- A hint: Learnings from Phase 1
OUTLINE

- General Information
- Phase 2
 - Overview
 - Scenario 1: Set-point step change
 - Scenario 2: Disturbance of the flowrate
 - Scenario 3: Shutdown of one engine
- Plant performance with the initial controller settings
- A hint: Learnings from Phase 1
PLEASE BE AWARE OF OUR COPYRIGHT

• Ownership of copyright: The copyright for this website and the material on this website (including without limitation the text, computer code, flow sheets, artwork, photographs, images, music, audio material, video material and audio-visual material) is owned by Chemstations Europe GmbH or its affiliates ("Chemstations Europe") and its licensors.

• Copyright license: Chemstations Europe grants to you a worldwide non-exclusive royalty-free revocable license to:
 – view this website and the material on this website on a computer or mobile device via a web browser;
 – copy and store this website and the material on this website in your web browser cache memory; and
 – copy and store the flow sheets on this website on a computer.

• Chemstations Europe does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved.

• For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without Chemstations Europe’s prior written permission.
IS THIS DOCUMENT FOR ME?

• This document is for you, if you want to
 – learn about typical disturbances that can affect the operation of a biogas powerplant
 – understand how the optimization problem of PSC2020 is formulated

• This document
 – introduces the first three scenarios of PSC2020
 – explains how the objective function is calculated
 – gives the parameters used to calculate benefits and costs for each scenario
OUTLINE

- General Information
- Phase 2
 - Overview
 - Scenario 1: Set-point step change
 - Scenario 2: Disturbance of the flowrate
 - Scenario 3: Shutdown of one engine
- Plant performance with the initial controller settings
- A hint: Learnings from Phase 1
OVERVIEW

Phase 2: Make use of the “D” in PID

• These days we all learn what exponential growth really means!

• Many variables in chemical processes show an exponential correlation

• Having information about the speed of growth (= the derivative) can be very helpful for controlling processes

• This information can be used in a PID controller with the “D” part, which stands for the differential change of the error
OVERVIEW

Phase 2: Make use of the “D” in PID

• These days we all learn what exponential growth really means!

• Many variables in chemical processes show an exponential correlation

• Having information about the speed of growth (= the derivative) can be very helpful for controlling processes

• This information can be used in a PID controller with the “D” part, which stands for the differential change of the error

• The scenarios in phase 2 are the same as in phase 1

• In phase 2 you can switch on the “D” part of the controllers

• The electricity price has been increased for phase 2. Now you get 100 € as a base price for each scenario

• The contractual penalty applied to the first scenario is relaxed in phase 2. The new penalty is 1 € per unit of Integral Square Error and per Flow Controller.
SCENARIO 1: SET-POINT STEP CHANGE

• The flow to engine 1 must be increased by 10% from 140 kg/h to 154 kg/h
• The set-point change is done in one step at time t = 5 min
• The operation period is 60 minutes
• During the operation period 100 € are earned
SCENARIO 1: SET-POINT STEP CHANGE

- For safety valve emissions 100 €/kg must be payed
- For emissions via one of the flares 1 €/kg must be payed
- The integral square error of FC1 is penalized with 1 € per unit
- The integral square error of FC2 is penalized with 1 € per unit
SCENARIO 1: SET-POINT STEP CHANGE

- For safety valve emissions 100 €/kg must be paid.
- For emissions via one of the flares 1 €/kg must be paid.
- The integral square error of FC1 is penalized with 1 € per unit.
- The integral square error of FC2 is penalized with 1 € per unit.
SCENARIO 2: DISTURBANCE OF THE FLOWRATE

- The fermenter is producing more biogas
- The flowrate is increased by 20% from 300 Std. m³/h to 360 Std. m³/h
- The increase is linear in time from $t_1 = 5$ min to $t_2 = 10$ min
- The operation period is 60 minutes (100 € are earned)
SCENARIO 2: DISTURBANCE OF THE FLOWRATE

• For safety valve emissions 100 €/kg must be payed
• For emissions via one of the flares 1 €/kg must be payed
• The integral square error of FC 1 is penalized with 1 € per unit
• The integral square error of FC 2 is penalized with 1 € per unit
SCENARIO 3: SHUTDOWN OF ONE ENGINE

- Engine 1 is shut down due to an emergency
- The flow to engine 1 is reduced to zero in one step
- The control valve of FC 1 is closed completely at $t = 5$ min
- The operation period is 60 minutes
- During the operation period 100 € are earned
SCENARIO 3: SHUTDOWN OF ONE ENGINE

- For safety valve emissions 100 €/kg must be payed.
- For emissions via one of the flares 1 €/kg must be payed.
- The integral square error of FC 2 is penalized with 0.1 € per unit.
OUTLINE

- General Information
- Phase 2
 - Overview
 - Scenario 1: Set-point step change
 - Scenario 2: Disturbance of the flowrate
 - Scenario 3: Shutdown of one engine
- Plant performance with the initial controller settings
- A hint: Learnings from Phase 1
INITIAL CONDITIONS & CONTROLLER SETTINGS

<table>
<thead>
<tr>
<th>Controller Settings</th>
<th>PB [%]</th>
<th>Ti [min]</th>
<th>Td [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC3</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pe1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pe2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Sc_P = 1.39 bar abs.

Initial State of the Flowsheet
SCENARIO 1 – FC 1

ISE_{60\text{min}} (FC 1) = 6.35
SCENARIO 1 – FC 2

ISE_{60\text{min}} (FC 2) = 2.95
SCENARIO 1 – PC 1

Safety valve emissions = 0.00 kg
Flare 1 emissions = 0.00 kg
SCENARIO 1 – PC 2

Flare 2 emissions = 0.00 kg
SCENARIO 1 – PC 3

![Diagram showing pressure fluctuations over time for PC 3 with set point and process value lines.](image-url)
Scenario 1 – Result Page

Controller Settings

<table>
<thead>
<tr>
<th>Controller</th>
<th>PB [%]</th>
<th>Ti [min]</th>
<th>Td [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC3</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pel1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pel2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Scenario Selection

| Selection | 1 |

Scenario Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Safety Valve</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>Emissions Flare 1</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>Emissions Flare 2</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>ISA FC1</td>
<td>6.35</td>
</tr>
<tr>
<td>ISA FC2</td>
<td>2.95</td>
</tr>
<tr>
<td>ISA Pel1</td>
<td>0</td>
</tr>
<tr>
<td>ISA Pel2</td>
<td>0</td>
</tr>
</tbody>
</table>

Benefit

- Penalty for Safety Valve Emissions: 0.00 €
- Penalty for Flare 1 Emissions: 0.00 €
- Penalty for Flare 2 Emissions: 0.00 €
- Penalty for Controller Error FC 1: 6.35 €
- Penalty for Controller Error FC 2: 2.95 €
- Penalty for Controller Error Pel 1: 0.00 €
- Penalty for Controller Error Pel 2: 0.00 €

Profit: 90.70 €
SCENARIO 2 – FC 1

$\text{ISE}_{60\text{min}} (\text{FC 1}) = 17.26$
SCENARIO 2 – FC 2

ISE_{60\text{min}} (FC 2) = 22.15
SCENARIO 2 – PC 1

Safety valve emissions = 00.00 kg
Flare 1 emissions = 37.98 kg
SCENARIO 2 – PC 2

Flare 2 emissions = 0.02 kg
SCENARIO 2 – PC 3

PC 3

0 10 20 30 40 50 60
Time [min]

1.17 1.18 1.19 1.2 1.21 1.22 1.23 1.24
Pressure [bar (abs.)]

Set point
Process value
SCENARIO 3 – FC 1

ISE_{60\text{min}} \ (FC \ 1) = \text{Not relevant}
SCENARIO 3 – FC 2

$ISE_{60\text{min}} (FC 2) = 110.97$
SCENARIO 3 – PC 1

Safety valve emissions = 0.00 kg
Flare 1 emissions = 2.24 kg
SCENARIO 3 – PC 2

Flare 2 emissions = 0.29 kg
SCENARIO 3 – RESULT PAGE

Controller Settings

<table>
<thead>
<tr>
<th>Controller</th>
<th>PB [%]</th>
<th>Ti [min]</th>
<th>Td [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PC3</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>FC2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pel1</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pel2</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Scenario Selection

3

Scenario Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions Safety Valve</td>
<td>0.00 kg</td>
</tr>
<tr>
<td>Emissions Flare 1</td>
<td>2.24 kg</td>
</tr>
<tr>
<td>Emissions Flare 2</td>
<td>0.29 kg</td>
</tr>
<tr>
<td>ISA FC1</td>
<td>110.97</td>
</tr>
<tr>
<td>ISA FC2</td>
<td>110.97</td>
</tr>
<tr>
<td>ISA Pel1</td>
<td>0</td>
</tr>
<tr>
<td>ISA Pel2</td>
<td>0</td>
</tr>
</tbody>
</table>

Benefit

100.00 €

<table>
<thead>
<tr>
<th>Penalty Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penalty for Safety Valve Emissions</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Penalty for Flare 1 Emissions</td>
<td>2.24 €</td>
</tr>
<tr>
<td>Penalty for Flare 2 Emissions</td>
<td>0.29 €</td>
</tr>
<tr>
<td>Penalty for Controller Error FC 1</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Penalty for Controller Error FC 2</td>
<td>11.10 €</td>
</tr>
<tr>
<td>Penalty for Controller Error Pel 1</td>
<td>0.00 €</td>
</tr>
<tr>
<td>Penalty for Controller Error Pel 2</td>
<td>0.00 €</td>
</tr>
</tbody>
</table>

Profit

86.37 €
PHASE 2 SCENARIO SUM-UP

Result

<table>
<thead>
<tr>
<th></th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit [€]</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Penalty for Safety Valve Emissions [€]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Penalty for Flare 1 Emissions [€]</td>
<td>0.00</td>
<td>37.98</td>
<td>2.24</td>
</tr>
<tr>
<td>Penalty for Flare 2 Emissions [€]</td>
<td>0.00</td>
<td>0.02</td>
<td>0.29</td>
</tr>
<tr>
<td>Penalty for Controller Error FC 1 [€]</td>
<td>6.35</td>
<td>17.26</td>
<td>0.00</td>
</tr>
<tr>
<td>Penalty for Controller Error FC 2 [€]</td>
<td>2.95</td>
<td>22.15</td>
<td>11.10</td>
</tr>
<tr>
<td>Penalty for Controller Error Rel 1 [€]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Penalty for Controller Error Rel 2 [€]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Profit [€]</td>
<td>90.70</td>
<td>22.59</td>
<td>86.37</td>
</tr>
</tbody>
</table>

Total profit: 199.66€
General Information

Phase 2
- Overview
- Scenario 1: Set-point step change
- Scenario 2: Disturbance of the flowrate
- Scenario 3: Shutdown of one engine

Plant performance with the initial controller settings

A hint: Learnings from Phase 1
A HINT: LEARNINGS FROM PHASE 1

• In phase 1 a total number of 10 parameters had to be tuned
• In phase 2 a total number of 15 parameters must be tuned
• It is important to find out which parameter have
 – a high impact on the profit,
 – a low impact on the profit, or
 – no impact on the profit at all!
A HINT: LEARNINGS FROM PHASE 1

- In phase 1 a total number of 10 parameters had to be tuned
- In phase 2 a total number of 15 parameters must be tuned
- It is important to find out which parameter have
 - a high impact on the profit,
 - a low impact on the profit, or
 - no impact on the profit at all!

And here is the hint:

You can switch of a part of the controller (P, I, and / or D) by setting its value (PB, TI, and /or TD) to zero!
THANK YOU!

JS@CHEMSTATIONS.EU